The catch-22 of being a carnivorous plant

Guest post by Sonja Dunbar (@PlantSciSonja)

Plants, like any other organism, want to reproduce. The usual way that plants achieve this is known as sexual reproduction, where an egg cell and sperm from two different individuals fuse and then develop into a new plant. However, since plants are generally anchored to one spot, they can’t meet up to reproduce. Instead, they rely on a variety of more indirect methods to transport sperm to other plants. For example, many flowering plants (also known as angiosperms) recruit insect messengers to carry their sperm, safely packaged in pollen grains, from one plant to another. They use colourful, sometimes scented, flowers to attract potential pollinators and often reward them with a sugary drink, nectar, while coating them in the pollen the plant wants them to carry. But what if you are a plant that also eats insects?

Pollinators S Dunbar[1]

Some of the most well-known pollinators; bees and butterflies. Image credit: S. Dunbar

Carnivorous plants obtain nutrients from trapped insects to help them cope with a lack of important nutrients in their environment, such as nitrogen, that they need to grow (1). There are several different trap types, from snap traps, to flypaper traps and pitfall traps. The fact that carnivorous species are found in multiple different plant families suggests this strategy has arisen several times. Continue reading

On the origin of chloroplasts

Guest post by Joram Schimmeyer

20160221_Joram-Guest-Blog

Chloroplasts in plant cells are easily identified under a microscope by their green colour. Image: J. Schimmeyer.

Of all the biological processes found on Earth, photosynthesis could be considered one of the most important. During photosynthesis, the energy from sunlight is used to build up sugars in the cells of plants, algae and some bacteria. These sugars can then be metabolised by the cells or other organisms that feed on them. Also, photosynthesis produces oxygen gas as a by-product, which is needed by most forms of life on earth. Without photosynthesis, life as we know it would not be possible.

In plants and algae, photosynthesis is carried out in tiny compartments inside cells called chloroplasts. This compartment contains a green pigment called chlorophyll, which is used to harvest light energy and is responsible for plants appearing green in colour. Chloroplasts vary greatly in shape and size, but they are all enclosed by two membranes and filled with even more membranes known as the thylakoid membrane system. The key players of photosynthesis are located within these thylakoid membranes; large groups of proteins use the light energy from chlorophyll to convert carbon dioxide form the atmosphere into sugars. The sugars can then be broken down to provide energy to drive growth and other cellular processes. Continue reading

Thank you

As you may know, my year did not get off to the best start and I’ve been having a bit of a break from blogging.

Thank you to everyone who volunteered to write guest posts during my break. My plea for help with the blog got a much bigger response than I had anticipated and this brightened what was otherwise a very tough time for me. It has been a real treat for me to host articles written by such a variety of different people and covering such different topics. Most of the guest articles are now up but there should be a couple more to come in the next few weeks.

I also want to thank the many other people who spread the word about my hunt for guest bloggers and sent me supportive messages. I feel really lucky to belong to such a supportive online community.

I’m starting to feel the urge to write again so I hope to be able to publish a science post on here in the next week or so. I always enjoy receiving guest posts so please do get in touch if there is something you would like to write about.

An unsustainable trade

Guest post by Isabella Whitworth (@Orchella49).

DSCF5010 I Whitworth

Roccella gracilis on wool yarn that has been dyed with orchil made from Lasallia pustulata. Image credit: Isabella Whitworth .

Lichens are complex plant-like organisms made up of a fungus and an alga or cyanobacterium that live together in a mutually beneficial relationship (symbiosis). They are often found attached to rocks or trees and species can vary hugely in appearance, from flat, crusty forms to leaf-like growths. Certain species have been used as dyestuffs for millennia, although not all lichens produce dye.

My research into dye lichens was triggered by a chance mention of ‘an archive in the attic’ by local friends. Their forebears were dye manufacturers in nineteenth century Leeds in the UK and the company archive had been passed down three generations. The company’s initial fortunes came from the successful processing of orchil, a dye made from lichens. Continue reading

Peer mentoring & why you should, too

Guest post by Liz Haswell (@ehaswell)

mentoring

Image licensed under CC BY-SA 3.0 NY via Google (author not known).

Mentoring programs are believed to be essential to a successful career in science and are considered a critical step in improving the retention of women and under-represented minorities in science, engineering and technology fields*. Traditional mentoring matches a junior or inexperienced person—the mentee—with someone senior or more experienced—the mentor. The topic of today’s post is a different kind of mentoring, which I am calling “peer mentoring**”. In this case, each participant is both a mentor and a mentee. Over the last 15 years, I have been involved in several different peer-mentoring groups, and in every case they have been a powerful source of personal and professional growth. Here, I explain what I mean by peer mentoring, describe my own experiences, and list some suggestions for starting your own group.

One possible format for a peer-mentoring group is laid out in the book Every Other Thursday: Stories and Strategies from Successful Women Scientists. Ellen Daniell describes her experience as part of a group of women faculty—including beloved University of California, San Francisco (UCSF) professors Carol Gross and Christine Guthrie—as they meet every two weeks to set goals and troubleshoot challenges. Though this book is more memoir than instruction manual, it explains in detail how the group members established a rigorous yet supportive framework that helped them to be as productive as possible during their meetings, and how the work they did in “group” improved their personal and professional lives.  Continue reading

Sudden oak death – a disease as ominous as its name

Guest post by Monica Lewandowski (@MMLewandowski52)

Sudden oak death is a disease that has killed millions of oaks (Quercus spp.) and tanoaks (Notholithocarpus densiflorus) in the western United States. First detected in California in the mid 1990s, it continues to steadily spread through northern California and Oregon forests, with the potential to wreak more havoc in forests and landscapes across the world.

The underlying cause of sudden oak death is a fungal-like organism, Phytophthora ramorum. The spores of P. ramorum are spread by wind, rain and human movement of infected plants. And more bad news – P. ramorum can infect much more than oaks. A strain of P. ramorum that infects larch trees is making headlines in the United Kingdom, where it’s better known as larch tree disease. Several species of trees and shrubs, herbaceous plants and even maidenhair fern are on P. ramorums “host” list (view regulated plant list in the United States). This is a cause for concern as losing one or more key plant species in a forest can lead to dramatic changes for both the flora and fauna of an ecosystem. Continue reading

Where’s the plant science in beef?

Guest post by Erin Sparks (@ErinSparksPhD)

Four years ago I became a first generation beef farmer. I had just started a postdoc studying the development of plant roots when my husband told me that his parents intended to give us beef cows as a wedding present. Whoa. Wait. What?!?!?! First of all, we live in a very small apartment – where are we going to put cows? Second of all, we know nothing about farming. Fear not fair reader, the good news is that my in-laws keep the cows for us and they are “many”-generation beef farmers so they know what they’re doing. Through their tutelage, I’m slowly becoming a beef farmer. I’ve learned about herd management, breeding, economics and more. Although all aspects of farming fascinate me, I wanted to tell you specifically about how plant science contributes to our farm.

Twins[2] cropped

One of Erin’s cows and her new twins. Much like humans, twins are a rarity for bovine. Image credit: E. Sparks

We run a cow-calf operation, which means that we keep a herd of cows (100+ in total) and three bulls on the farm. These animals are bred and their calves are then sold to market. What do these animals eat? Feeding cattle is a basic cost-benefit analysis. If you pay more to feed your animals than the profit you gain, you can’t make a living. Although it is not as simple as that, because beef prices are constantly fluctuating, so you also have to consider market projections. On our farm, we strive to be self-sufficient for feeding our animals. This means we grow over 200 acres of hay that is rolled and stored. In the summer, the animals are grazing in the fields, but come winter, when the fields freeze over, the animals get fed these hay bales. Alternatively, you can raise animals on grain feed, but this is exceedingly more expensive. We save grain feed for the calves after weaning, and to increase growth before selling. Continue reading