Bramble: friend or foe?

9761244165_99cc14e321_k

Blackberries change colour from red to black as they ripen. Image by Thomas’ pics (CC BY 2.0 via Flickr)

In England at this time of year, the hedgerows along country lanes are full of delicious fruits called blackberries. Just last week I spent an enjoyable afternoon with friends gorging on blackberries along the route of an old railway line in Norwich (now a footpath and cycleway). The berries are a good source of vitamin C and antioxidants, and are commonly used in desserts and preserves. Although I love collecting and eating blackberries, I have a bit of a love-hate relationship with the plant that produces them, the bramble (Rubus fruticosus agg.).

Rubus fruticosus agg. isn’t a single species, but instead is a group (or aggregate; agg) of around 200-300 very similar species of shrub in the rose family that are very hard to tell apart (1). Like roses, brambles are covered in sharp thorns that help to protect the plant from herbivores (and humans). The thorns also help to make brambles a safe haven for many small birds and other wildlife.

5810539086_4d10ca39ee_b

Brambles are pollinated by insects. Image by Roger Bunting (CC BY-NC-ND 2.0 via Flickr)

Brambles grow wild across most of Europe and in the UK they can thrive in most environments (1). The white or pinkish flowers are self-fertile and can still produce seeds even in the absence of fertilization (a process called apomixis) to produce an army of clone plants (2). Furthermore, brambles can produce suckers – new shoots from buds in the roots – which helps them rapidly cover an area of ground. As a result, brambles are often among the first plants to colonise abandoned plots of land. This is great for wildlife and the casual blackberry picker, but it’s not so helpful if you are trying to work on said piece of abandoned land…

When some friends and I took on an allotment this year, our plot had been neglected for a while and contained quite a lot of brambles. We removed a lot of the plants but have left some to be our own personal blackberry patch. Removing brambles is not a fun business as the thorns can cut through clothes (and gardening gloves). For several weeks in the spring my arms and legs were covered in scratches and I often found bramble thorns impaled in my fingers. If you don’t manage to completely remove the whole root, the bramble is quite capable of growing a fresh shoot so we’ve had a few cheeky brambles reappearing in the vegetable beds.

Despite my moaning about brambles I must say that the blackberry crop from the allotment has been great. It is kind of ironic that our most successful crop this year is something we weren’t deliberately growing. All in all, if I had to summarize my relationship with the bramble at the moment, I would say: “it’s complicated”.

 

1) Wikipedia: Blackberry https://en.wikipedia.org/wiki/Blackberry

2) Brambles (Rubus fruticosus) http://www.woodlands.co.uk/blog/flora-and-fauna/brambles-rubus-fructicosus

Image links:

Bramble by Thomas’ pics

Canal: Morse to town 7 June ’11 by Roger Bunting

Canal: Morse to town 7 June '11 038.jpg

Poison in the garden

2808366285_8c1b1aefff_o.jpg

The gates of Alnwick Poison Garden, north-east England. Image by Jacqui (CC BY-NC-ND 2.0) via Flickr

While giving my undergraduate class a tour of a botanic garden, a university professor said that “we should only eat the parts of a plant that the plant wants us to eat”. He was referring to the fruit, which many plants encourage animals to eat in order to spread their seeds in the environment (though not all fruits are edible). I don’t think he meant us to take his advice literally, but it is sensible to eat plants with caution. Alongside famous poisons including belladonna and hemlock, plants produce a variety of other molecules that aim to deter animals from eating them. Some of these molecules – such as ricin, which is produced by the castor oil plant – are so poisonous that tiny quantities can kill you. Others, like caffeine or the anti-malaria drug quinine, have less dramatic effects on the human body that we may find desirable or useful.

I recently visited The Alnwick Garden in north-east England, which has a special garden dedicated to educating visitors about the potential dangers of plants. In fact, some of the plants on display in the Poison Garden are so dangerous that visitors can only enter as part of a guided tour. I really enjoyed the tour and if you are ever in the area I recommend you pay the garden a visit.

The tour included some well-known poisonous plants, but the main message I took home from the tour was that many common garden plants are also potentially dangerous if they touch your skin or you accidently eat them. Below are a few examples of common plants that aren’t as benign as they might first seem:

Rhubarb (Rheum x hybridium)

While the pink fleshy stalks of the rhubarb plant are safe to eat and are commonly used in desserts, the leaves are highly toxic (1). This is thought to be due to the presence of high levels of oxalic acid, which can interfere with chemical reactions in the body by combining with calcium and other metals.

Common ivy (Hedera helix)

This rapidly growing vine is a haven for wildlife and attracts at least 70 species of nectar-feeding insects in its native range of Europe and Western Asia (2). Contact with ivy can cause an allergic skin reaction in some people, due to a natural pesticide in the leaves called falcarinol (3). Regardless of whether you are allergic to ivy or not, you should avoid eating this plant because its leaves contain saponins, which can cause vomiting, convulsions and even death.

Common nettle (Urtica dioica)

Children quickly learn that contact with common nettles results in a painful stinging sensation and skin inflammation. This is due to a cocktail of molecules including histamine, serotonin and oxalic acid, which is released from hairs on the surface of the leaves. For more information check out this cool infographic by Compound Interest.

Common laburnum (Laburnum anagyroides)

All parts of this small tree are poisonous, due to the presence of a molecule called cytisine, which has a similar structure to nicotine and has similar effects on the body. Laburnam is a member of the pea family and cases of laburnam poisoning are often caused by individuals mistaking laburnum seeds for peas and eating them (4). Mild cases may cause nausea and vomiting, but laburnum poisoning can also lead to insomnia, convulsions and coma.

These are just a few examples of common garden plants that can be harmful to humans and other animals. Fortunately, you can protect yourself against these and other poisonous plants by taking simple precautions, such as wearing gloves while gardening and carefully identifying edible plants when foraging.

Author’s note: Sorry for the long silence on this blog. My life has been quite chaotic in the last few months due to several events (expected/not expected, good/bad) and so the blog has had to take a back seat. Things are calming down a bit now so I’m hoping to get back into posting regularly, probably about twice a month. As ever, I’m always keen to receive guest posts so if you are interested in writing for Plant Scientist, please do get in touch.

References:

  1. The Poison Garden blog: Rheum x hybridium http://www.thepoisongarden.co.uk/atoz/rheum_x_hybridum.htm
  2. Wikipedia: Hedora helix https://en.wikipedia.org/wiki/Hedera_helix
  3. Compound interest advent calendar http://www.compoundchem.com/2014advent2/
  4. The Poison Garden blog: Laburnam anagyroides http://www.thepoisongarden.co.uk/atoz/laburnum_anagyroides.htm

Lab Girl by Hope Jahren

51miGrYIk-LIn Lab Girl, scientist Hope Jahren has cleverly weaves a memoir of her own life with passages about the lives of plants, her scientific passion. From her childhood in a small town in Minnesota to her current position as a Professor at the University of Hawai’i, she gives a candid account that includes some of the adventures, funny incidents, obstacles, and shifts in her scientific thinking that happened along the way. The book is a fascinating window into the life of a gifted, passionate, yet (reassuringly) human scientist. If you haven’t read it yet, then I highly recommend you get your hands on a copy.

If you aren’t convinced by my mini-review, then I suggest you check out this longer review from the NY times.

From plant science to gardening

20160427_181428

Spring in my garden

Last week this blog celebrated its third birthday. In that time I have gone from being a research scientist to working as an editor for a scientific journal and so the involvement of plants in my life has changed somewhat. Working with plants was one of my favourite parts of my old role in research and so its perhaps not surprising that I now do quite a bit of gardening in my spare time.

Until about a year ago, the extent of my gardening experience was a few herbs in pots outside and a bunch of low-maintenance houseplants. I wasn’t always very good at looking after these plants, so branching out to a whole, albeit small, garden has all been a bit of an experiment!

I’m happy to say that my gardening experiment has overall been pretty successful so far. I’ve managed to grow some edible vegetables and my garden looks much tidier and more colourful than it did when I moved in. Most importantly, now that I have an office job, I’ve really enjoyed having a good excuse to spend lots of my leisure time outside. However, my first year in the garden hasn’t been completely plain sailing as I ran into a few problems and disasters along the way. Here are the most useful lessons I have learnt along the way:

Be on the alert for pests – they WILL find your favourite plants. Last year, slugs and snails attacked my salad leaves and destroyed the marigolds I was growing. I tried out a few different methods to deter them from eating the rest of my crops and eventually settled on copper tape. Slugs and snails don’t like crawling over copper and so I could use the tape to make a pretty good barrier to defend a lot of my vegetable crops. Unfortunately, the same cannot be said for my nasturtiums (Tropaeolum majus), which became infested with hundreds of blackflies (a type of aphid) and withered and died soon after.

That plant support or structure might look tidy, but will it withstand the weather? I must admit that the first few structures I built to support plants were not all as robust as they should have been because I didn’t really appreciate how windy it would be in my garden. The canes holding up my tomatoes were blown over on several occasions, and the netting structure protecting my cabbages nearly flew away in a winter gale.

When digging in an overgrown patch of ground, keep an eye out for plants you might want to keep. Last year, I got a good crop of potatoes from the handful of tubers left in the vegetable patch by the previous occupants of the house. And just this week I discovered some parsnips growing amongst the grass of the overgrown allotment I’ve recently taken on with some friends. Being fairly hopeless at plant identification, I didn’t know what potato or parsnip plants looked like until I stumbled into them.

Work out what types of plants you like to grow and then grow them. I like to feel “productive” when I’m gardening, so I can spend hours tending to my vegetable patch and then forget to water my houseplants. As a result, I’ve tried to fill as much of my garden with fruit and vegetables as possible, and then used low-maintenance decorative plants to fill in the gaps and really shaded areas.

My main gardening project for this year is to work on an allotment with my friends. The plot hasn’t been cultivated in a few years so was pretty overgrown, but since we took on the tenancy a couple of months ago, we have managed to clear some parts of it and plant some soft fruit crops. Watch this space.

2016-04-24 14.40.14.jpg

The new project…

Tracing the roots of an ancient friendship

 

Figure 1

An AM fungus (yellow) contacts the surface of a plant root. The nuclei of the plant cells are visible as blue spots. Image adapted from ref 3. Credit: Andrea Genre and Mara Novero (CC BY 3.0).

Plants need nutrients to be able to grow. Unfortunately, many of these nutrients can be scarce in the soil and therefore hard to get hold of. To get around this problem, most plants are able to form friendly relationships – known as symbioses – with soil microbes that can provide them with certain nutrients in exchange for sugars.

Today, around 80% of land plants form symbioses with a group of fungi known as arbuscular mycorrhizal (AM) fungi (1). Fossil evidence suggests that this symbiosis first emerged around 450 million years ago. This is around the same time that plants first started to colonise land. The transition from water to the dry and harsh environments on land would have presented many challenges to the early land plants, for example, how to avoid losing too much water. Another challenge would have been how to access essential nutrients that their ancestor (a type of green algae) would have gained directly from the water.

The liverworts, hornworts and mosses are thought to be the earliest groups of land plants (2). Since the AM symbiosis is widespread in these groups, it has been suggested that this symbiosis is one of the innovations that helped these primitive plants to survive on land.

Previous studies have identified many plant genes that are needed for AM symbiosis in legumes and other land plants. These genes can be split into two main groups: some are in a signalling pathway needed for the plant and fungus to communicate with each other, and others are activated later to allow the fungus to infect into the roots of the plant. Recently, Pierre-Marc Delaux and colleagues used a technique called phylogenetics to analyse genetic material from many different algae, liverworts, hornworts and mosses with the aim of finding out when the AM symbiosis genes first appeared (2).

Delaux et al. show that these plant genes emerged in stages, starting from before earliest plants colonised land. The signalling pathway genes appeared first, and are present in the algae that are thought to be the closest relatives of land plants, the Charophytes (2). On the other hand, the infection genes appear to be missing from the algae, but are present in the liverworts, hornworts and mosses.

These findings suggest that the algal ancestors of land plants were pre-adapted to interact with fungi. Currently, there is no evidence to suggest that the Charophytes are able to form AM symbioses themselves. Therefore, it is possible the signalling pathway evolved to allow algae to interact with other microbes and was later altered to allow the early land plants to interact with AM fungi.

Reference:

  1. Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol, 6, 763-75.
(Good review of AM symbiosis, but unfortunately this article is hidden behind a paywall…)
  2. Delaux P, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ, Sederoff HW, Stevenson DW, Surek B, Zhang Y, Sussman MR, Dunand C, Morris RJ, Roux C, Wong GK-S, Oldroyd GED, Ané JM. 2015. Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America. 2015, DOI: 10.1073/pnas.1515426112, PMID: 26438870
  3. Corradi N, Bonfante P. 2012. The Arbuscular Mycorrhizal Symbiosis: Origin and Evolution of a Beneficial Plant Infection. PLoS Pathog 8(4): e1002600. doi:10.1371/journal.ppat.1002600

The catch-22 of being a carnivorous plant

Guest post by Sonja Dunbar (@PlantSciSonja)

Plants, like any other organism, want to reproduce. The usual way that plants achieve this is known as sexual reproduction, where an egg cell and sperm from two different individuals fuse and then develop into a new plant. However, since plants are generally anchored to one spot, they can’t meet up to reproduce. Instead, they rely on a variety of more indirect methods to transport sperm to other plants. For example, many flowering plants (also known as angiosperms) recruit insect messengers to carry their sperm, safely packaged in pollen grains, from one plant to another. They use colourful, sometimes scented, flowers to attract potential pollinators and often reward them with a sugary drink, nectar, while coating them in the pollen the plant wants them to carry. But what if you are a plant that also eats insects?

Pollinators S Dunbar[1]

Some of the most well-known pollinators; bees and butterflies. Image credit: S. Dunbar

Carnivorous plants obtain nutrients from trapped insects to help them cope with a lack of important nutrients in their environment, such as nitrogen, that they need to grow (1). There are several different trap types, from snap traps, to flypaper traps and pitfall traps. The fact that carnivorous species are found in multiple different plant families suggests this strategy has arisen several times. Continue reading

On the origin of chloroplasts

Guest post by Joram Schimmeyer

20160221_Joram-Guest-Blog

Chloroplasts in plant cells are easily identified under a microscope by their green colour. Image: J. Schimmeyer.

Of all the biological processes found on Earth, photosynthesis could be considered one of the most important. During photosynthesis, the energy from sunlight is used to build up sugars in the cells of plants, algae and some bacteria. These sugars can then be metabolised by the cells or other organisms that feed on them. Also, photosynthesis produces oxygen gas as a by-product, which is needed by most forms of life on earth. Without photosynthesis, life as we know it would not be possible.

In plants and algae, photosynthesis is carried out in tiny compartments inside cells called chloroplasts. This compartment contains a green pigment called chlorophyll, which is used to harvest light energy and is responsible for plants appearing green in colour. Chloroplasts vary greatly in shape and size, but they are all enclosed by two membranes and filled with even more membranes known as the thylakoid membrane system. The key players of photosynthesis are located within these thylakoid membranes; large groups of proteins use the light energy from chlorophyll to convert carbon dioxide form the atmosphere into sugars. The sugars can then be broken down to provide energy to drive growth and other cellular processes. Continue reading